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I. SDEDIT: GUIDED IMAGE SYNTHESIS AND EDITING
WITH STOCHASTIC DIFFERENTIAL EQUATIONS [1]

This paper introduces a method called SDEdit, which uses
different levels of details of images as input, and a pre-trained
diffusion model as prior. The input can be stroke-only images,
stroke-real images, and real-real images (see Fig. 1).

As well known, diffusion models employ a forward process
that adds noise to the image, and a reverse process that

Fig. 1. SDEdit can use different levels of details of images as input.

Fig. 2. Synthesizing images from strokes with SDEdit. The blue dots illustrate
the editing process of our method. The green and blue contour plots represent
the distributions of images and stroke paintings, respectively.

removes the noise from the noisy images. In the forward
process, it removes the high-frequency information in the
early stages, and removes the low-frequency information in the
later stages. In the reverse process, it first constructs the low-
frequency structure and then adds the high-frequency details.
Based on this principle, SDEdit first adds noise to destroy the
details of the input image. This reserves the structures of the
input images. Then, the reverse process starts to add details
using the prior model. The full algorithm is illustrated in Fig.
2.

II. PROMPT-TO-PROMPT IMAGE EDITING WITH CROSS
ATTENTION CONTROL [2]

In recent years, Stable Diffusion [10], an open-source dif-
fusion model, has been widely used in many research. It can
synthesize images following the input prompt. This text-to-
image synthesis ability is based on classifier-free guidance.
Specifically, Stable Diffusion models the joint distribution of
image-text pairs via the cross-attention mechanism. The deep



Fig. 3. Cross-attention maps of a text-conditioned diffusion image generation.
It displays the average attention masks for each word in the prompt that
synthesized the image on the left.

Fig. 4. The attention maps from different diffusion steps w.r.t. the words
“bear” and “bird”.

spatial features of the noisy image ϕ(zt) are projected to a
query matrix Q = LT

Qϕ(zt), and the textual embedding is
projected to a key matrix K = LT

Kψ(P) and a value matrix
V = LT

V ψ(P), via learnable linear projections LQ, LK , and
LV . The cross-attention map is then calculated via:

M = Softmax

(
QKT

√
d

)
, (1)

where the cell Mi,j defines the similarity between the j-th
token and the i-th pixel. Finally, the cross-attention output is
defined as the average of the V weighted by M , ϕ′(zt) =MV .
The cross-attention map can be viewed from two perspectives:
1) For the i-th row of M (i.e., Mi,·), it guides the network
“which token to look more” and “which token to look less”,
when synthesizing the i-th pixel. 2) For the j-th column of M
(i.e., M·,j), it defines how much each pixel is affected by the
i-th token (see Fig. 3).

Considering two denoising routes with the same random
seed: 1) Synthesizing an image corresponds to the prompt of
P , and 2) Synthesizing an image corresponds to the prompt
of P ∗. For simplicity, we assume that P and P ∗ only have
one different token, denoted as [DIFF] in P ∗. Each route will
yield cross-attention maps at each timestep, and we denote
them as Mt and M∗

t respectively. What if we replace the cross-
attention map P ∗ with P in route 2)? The synthesizing process
will follow the cross-attention map P . More specifically, the
token [DIFF] will only influence the pixels where P empha-
sizes rather than P ∗ emphasizes. Because the cross-attention
maps determine the structure in the early steps (see Fig. 4), the
structure will follow the image synthesized conditioned on P ,
and the appearance of the [DIFF] token attend on will follow
[DIFF].

Comments: P2P can be viewed as repainting the region
that the interested token provides with the target token.

III. DIFFUSIONCLIP: TEXT-GUIDED DIFFUSION MODELS
FOR ROBUST IMAGE MANIPULATION [3]

This paper fine-tuned a pre-trained diffusion model via CLIP
[11]: a global target loss, and a local directional loss:

Lglobal(xgen, ytar) = DCLIP(xgen, ytar), (2)

where ytar is a text description of the target, xgen denotes the
generated images, and DCLIP(·, ·) returns the cosine distance
between the inputs in the CLIP space. Another loss, the
local direction loss, is designed to alleviate the issues of the
global CLIP loss such as low diversity and susceptibility to
adversarial attacks [TODO]. It induces the editing direction
between the embedding of the generated and reference images
to be aligned with the direction between the embeddings of
the target and original texts:

Ldirection(xgen, ytar,xref , yref) = 1− ⟨∆I,∆T ⟩
∥∆I∥∥∆T∥

, (3)

where

∆T = CLIPT(ytar)− CLIPT(yref), (4)
∆I = CLIPI(xgen)− CLIPI(xref), (5)

where CLIPT and CLIPI are CLIP text encoder and image
encoder.

The overview of DiffusionCLIP is illustrated in Fig. 5. 1)
The input image x0 is first inversed to the latent code xt0 via
reversed DDIM, a deterministic sampling algorithm. 2) Then,
DiffusionCLIP starts to fine-tune the pre-trained diffusion
model ϵθ via the direction loss and identity loss:

Ldirection (x̂0, ytar;x0, yref) + Lid (x̂0,x0) , (6)

where

Lid (x̂0,x0) = λL1∥x0 − x̂0∥+ λfaceLface(x0, x̂0). (7)

The gradient flow can be visualized as Fig. 6. The generation
algorithm is DDPM.

Comments: 1) A fine-tuned model using the DiffusionCLIP
algorithm seems unable to be generalized to other tasks, such
as fine-tuning with “A happy face” but wishing to synthesize
“A angry face”. 2) The DDIM inversion may fail when facing
out-of-distribution images.

IV. PLURALISTIC AGING DIFFUSION AUTOENCODER [4]

This work is based on Diffusion Autoencoders (DiffAE)
(see Sec. V). DiffAE views the pre-trained diffusion prior as
a decoder and introduces a semantic encoder. The semantic
encoder converts an image to a latent variable z ∈ R512 and
the generated latent variable is fed into a diffusion model to
reconstruct the input images.

This work, DiffAE, manipulates the latent variable with age
information to achieve face aging. Specifically, 1) PADA first
encodes a text-image pair using CLIP, such as “man’s face in
his thirties” and the associated image. They argue that the text
feature contains rich age-related information (Comments: and
identity-irrelevant). 2) Then, they propose the Probabilistic



Fig. 5. Overview of DiffusionCLIP.

Fig. 6. Gradient flows while fine-tuning the diffusion model with the losses.

Aging Embedding, which yields a random variable in Gaussian
distribution:

LKL = KL
(
N (etxt, I)∥N (eage;µ, σ2I)

)
, (8)

where
eage ∼ N (µ, σ2I), (9)

and µ and σ are the mean and variance vectors yielded from
the Probabilistic Aging Embedding network (see the orange
region in Fig. 7). 3) Finally, they transfer the aging embedding
eage into the space defined by the semantic encoder using an
MLP-based network via:

∆zage = MLP(eage), (10)

and fuse with the semantic vector of the input image:

zage = Γ(∆zage; θ1)
zsrc − µsrc

σsrc
+ Γ(∆zage; θ2). (11)

Comments: This module may inspired by AdaIN.
There are age fidelity loss (like triplet loss), identity loss,

normalization loss, and reconstruction loss.
Comments: I argue that this paper’s contribution is in-

jecting age information into the semantic vector and using
text and a reference image to provide the age information,
which implicitly disentangled age and identity. The whole
training process does not need image pairs including the same
identity and different ages. I have not completely read the
supplementary materials. TODO

V. DIFFUSION AUTOENCODERS: TOWARD A MEANINGFUL
AND DECODABLE REPRESENTATION [5]

Diffusion models have recently succeeded in synthesizing
realistic and high-resolution images. The authors questioned
whether diffusion models can serve as a good representation-
learner. Although DDIM inversion can convert an input image

x0 into a spatial latent variable xT by its deterministic process,
the generated latent variable lacks high-level semantics and
other properties, such as disentanglement, and meaningful
interpolation in the latent space (see Fig. 8).

GAN inversion, which optimizes the latent code to re-
construct the given input. Even though the resulting code
carries rich semantics, this technique struggles to faithfully
reconstruct the input image since there exists an information
bottleneck in the latent code. This work aims to find a
decodable meaningful representation, which requires capturing
both high-level semantics and low-level stochastic variations.
The key idea is to learn high-level semantic representations
using a learnable encoder and low-level stochastic variations
using a diffusion model. Specifically, they trained a semantic
encoder and a decoder. The decoder is a conditional variant
of DPMs, and it takes two latent codes as input. 1) The first
subcode is the semantic code, which is converted from the
input image by the semantic encoder. 2) The second subcode
is the stochastic code, which is inferred by reversing the DDIM
process conditioned on the semantic code.

A. DDIM inversion

DDIM is a deterministic sampling algorithm:

xt−1 =
√
αt−1

(
xt −

√
1− αt√
αt

+
√
1− αt−1

)
ϵtθ(xt),

(12)
which can be viewed as an ordinary differential equation
(ODE) by rewriting to:

xt−1√
αt−1

− xt√
αt

=
(√

1− αt−1 −
√
1− αt

)
ϵtθ(xt). (13)

The forward DDIM process (DDIM inversion) to obtain the
latent is represented as:

xt =

√
αt

αt−1

xt−1

ϵtθ(xt)
−

√
αt(1− αt−1) +

√
1− αt. (14)

B. Semantic Encoder

The goal of the semantic encoder zsem = Enc(x0) is to
summarize the input image into a descriptive vector. Here,
zsem is a non-spatial vector of dimension d = 512 and
resembles the style vector in StyleGAN.

C. Stochastic Encoder

The output of the stochastic encoder xT =
DDIM inv(x0, zsem) is encouraged to encode only the
information left out by zsem. It contains the low-frequency
information of the input image and is a spatial tensor with
size C ×H ×W .

D. Diffusion Autoencoders

The encoders first convert the input image into latent codes
z = (zsem,x

T ). Then, DiffAE uses a conditional diffusion
model as a decoder, which reconstructs the input image from
the latent codes with DDIM sampling:

pθ(x0:T |zsem) = p(xT )

T∏
t=1

pθ(xt−1|xt, zsem). (15)



Fig. 7. Overview of PADA

Fig. 8. Interpolation between two real images in the latent space via DDIM
inversion. DDIM inversion produces non-smooth transitions.

The optimizing object is to minimize the simple loss function
defined in DDPM:

Lsimple = Ex0∼pdata,ϵ∼N (0,I),t∼[1,T ]

[
∥ϵθ(xt, t, zsem)− ϵ∥22

]
(16)

E. Unconditional Sampling

The major challenge of unconditional sampling of DiffAE
is how to sample zsem. The distribution of zsem belongs to is a
complex distribution. In this work, the authors trained another
diffusion model to generate zsem. Unlike image diffusion
models, the architecture of the diffusion model synthesizing
zsem is a deep MLP with skip connections (UNet with
transformer blocks is used in image diffusion models), and the
loss function is L-1 loss (L-2 loss function is used in image
diffusion models).

F. Summary

1) The diffusion autoencoder can achieve meaningful latent
interpolation, and high-quality image reconstruction thanks to
the utilization of low-level stochastic and high-level semantic
latent codes. 2) Because of the rich information about x0

in zsem, it can guide the sampling algorithm to reach x0

resulting in faster synthesizing compared with the models
without latent semantic codes. 3) The distribution where zsem

from is meaningful. It can perform image manipulation via
moving zsem in the latent space.

VI. DIFFMORPHER: UNLEASHING THE CAPABILITY OF
DIFFUSION MODELS FOR IMAGE MORPHING [6]

Diffusion models have achieved remarkable image gener-
ation quality. However, compared to GANs, they have diffi-
culties in smooth interpolation between two images 8. Such
smooth interpolation is intriguing as it naturally serves as a
solution for the image morphing task with many applications
[12]. The key idea of this work is to fit two LoRAs with two
real images and interpolate between both the LoRA parameters
and the DDIM latent variables.

A. LoRA Interpolation

Low-Rank Adaption (LoRA) is an efficient tuning technique
that was first proposed to fine-tune large language models and
recently introduced to the domain of diffusion models. Instead
of directly tuning the entire model, LoRA fine-tunes the model
parameters θ by training a low-rank residual part ∆θ. The
authors found that LoRA enjoys an impressive capacity to
encapsulate high-level semantics into the low-rank parameter
space. By fitting a LoRA on a real image, the fine-tuned model
can generate diverse samples with consistent semantic identity
when traversing the latent noise, see Fig. 9. They fit two
LoRAs (∆θ0 and ∆θ1) on two real images and interpolation
between the LoRAs:

∆θα = (1− α)∆θ0 + α∆θ1 (17)

B. Latent Interpolation

After LoRA interpolation, the next step is to find the
algorithm to interpolate the latent noise zTα and the latent
condition cα. Here, they first use DDIM inversion to obtain the



Fig. 9. A LoRA fitted to an image tends to capture its semantic identity,
while the layout and appearance are controlled by latent noise.

latent noise (denoted as zT0 and zT1) of the correspondence
input images. Then, the intermediate noise zTα is obtained
through “slerp” algorithm:

zTα =
sin(ϕ(1− α))

sinϕ
zT0 +

sin(ϕα)

sinϕ
zT1, (18)

where ϕ = arccos
(

zT
T0zT1

∥zT0∥∥zT1∥

)
. It is worth noting that the

vanilla DDIM inversion is known to suffer from unfaithful
reconstruction. Hence, the latent variables are obtained via
the LoRA-based fine-tuned UNet models. Regarding the inter-
polation of the condition embeddings, they found that linear
interpolation between aligned input conditions can serve as
meaningful intermediate conditions:

cα = (1− α)c0 + αc1. (19)

C. Self-Attention Interpolation and Replacement
Just utilizing LoRA interpolation and latent interpolation

still fails to achieve smooth changes. Inspired by attention-
base diffusion editing methods (such as prompt-to-prompt,
pix2pix-zero, etc) This paper proposed a method named self-
attention interpolation and replacement. As shown in Fig.
10, they interpolate the Ks and Vs matrices at each self-
attention module and replace the corresponding matrices in the
intermediate LoRA. In particular, replacing attention features
in all denoising steps may lead to blurred images. Thus, they
only replace the features at the early λT (λ ∈ (0, 1)) steps
(generate low-level structures) and leave the self-attention
modules unchanged in the remaining steps.

D. AdaIN Adjustment
To ensure the coherence in color and brightness between the

generated images and the input images, they introduced the
Adaptive Instance Normalization (AdaIN) adjustment. They
calculate the mean µi and the standard deviation σi (i =
{0, 1}) for each channel of the latent noises, and interpolate
between µi and σi as the adjustment target of the intermediate
noises:

µα = (1− α)µ0 + αµ1

σα = (1− α)σ0 + ασ1

z̃0α = σα

(
z0α − µ(z0α)

σ(z0α)

)
+ µα.

(20)

Fig. 10. Self-Attention Interpolation and Replacement

Fig. 11. (a) DDIM baseline, (b) + LoRA interpolation, (c) + attention
interpolation and replacement, (d) + reschedule (DiffMorpher).

E. Reschedule Sampling

Furthermore, they introduced a new rescheduling method.
Formally, assuming D(Ii, Ij) (i, j ∈ [0, 1]) is the perceptual
distance between Ii and Ij . Given the number of frames
n, the object is to make the variance of {D(Ii, Ii+ 1

n
)|i ∈

{0, 1
n , · · · , 1 − 1

n}} to be as small as possible. Define ∆D
w.r.t. α:

∆D(α) ≜


D(I0, I 1

n
)/D̄ if 0 ≤ α < 1

n

D(I 1
n
, I 2

n
)/D̄ if 1

n ≤ α < 2
n

· · · · · ·
D(I1− 1

n
, I1)/D̄ if 1− 1

n ≤ α < 1

, (21)

where D̄ =
∑1− 1

n
i=0 D(Ii, Ii+ 1

n
) is the sum of perceptual

distance between all adjacent frames.
TODO.

F. Ablation Results

See Fig. 11.

G. Diffusion Models already have a Semantic Latent Space
[13]

The lack of semantic latent space which is essential for
controlling the generative process. This paper found that the
deepest feature map in the pre-trained diffusion model has nice
properties to accommodate semantic image manipulation: 1)
homogeneity, 2) linearity, 3) robustness, and 4) consistency
across timesteps. They named the semantic space as h-space.



Fig. 12. Generative process of Asyrp.

Fig. 13. Visualizing diffusion decoder features in different decoder layers.
The deep features are passed to PCA and remain three primary components
for visualization. It can be found that: 1) The shallow layer (layer 1) features
differ from image semantics and are influenced by appearance. 2) The middle
layer (layer 4) features reveal semantic regions. The same semantic regions
share the same color across all images. It is not influenced by appearance.
3) The deeper layer (layers 7-11) features capture high-frequency (low-level)
information. It is influenced by appearance.

Fig. 12 shows the generative process of Asyrp. It introduces
a lightweight residual network ft in the h-space to convert the
deep feature to the feature with expected attributes via CLIP
loss.

VII. PLUG-AND-PLAY DIFFUSION FEATURES FOR
TEXT-DRIVEN IMAGE-TO-IMAGE TRANSLATION [7]

The famous LDM model, Stable Diffusion, is based on the
UNet, which includes residual blocks, self-attention layers,
and cross-attention blocks. This paper found that: 1) spa-
tial features extracted by the intermediate decoders contain
the localized semantic information and are less affected by
appearance information (see Fig. 13). 2) the self-attention
representing the affinities between the spatial features, allows
to retain fine layout and shape details (see Fig. 14).

Based on these observations, this paper translates an input
image by overriding the decoder feature maps and self-
attention maps, which contain the layout of the input image.

VIII. DELTASPACE: A SEMANTIC-ALIGNED FEATURE
SPACE FOR FLEXIBLE TEXT-GUIDED IMAGE EDITING [8]

Manipulating the latent code in the latent space is a common
method for image editing and how to find the target latent
code is the major issue in the latent-based manipulation field.
Since the CLIP model connects the image and textual spaces,

Fig. 14. Self-attention map visualization. The self-attention maps are aligned
with the layout of the image: similar regions share similar colors.

Fig. 15. Feature space analysis on (a) MultiModal-CelebA-HQ dataset and
(b) MS-COCO dataset.

it is widely utilized for text-conditioned image editing. In this
paper, the authors found that the features extracted by CLIP
from paired text-image data are not close to each other (see
Fig. 15). They randomly select 2 text-image pairs and extract
their features, which are denoted as f1i , f2i , f1t , and f2t , and
define:

∆t = f1t − f2t ,

∆i = f1i − f2i .
(22)

Then they visualize ∆t and ∆i as shown in Fig. 15. It can
be found that the CLIP feature difference space for image and
text exhibits better alignment and semantic consistency (i.e.
∆i ≈ ∆t). Based on this prior, this paper builds a model
that inputs the source image feature, source textual feature,
and image/textual direction (i.e. ∆i/∆t) and outputs the latent
direction ∆s (see Fig. 16).

Fig. 16. The overall framework of the proposed DeltaEdit.



Fig. 17. Overview of different network structures.

Fig. 18. The values of the hyper-planes at 5 levels.

IX. HIERARCHICAL DIFFUSION AUTOENCODERS AND
DISENTANGLED IMAGE MANIPULATION [9]

Probing and manipulating diffusion models’ latent space has
not been extensively explored. Though DiffAE converts an
input image into a 512-dimension semantic vector, it neglects
low-level and mid-level details. The main reason is that DiffAE
only uses the deepest feature of the UNet model as the
semantic vector (see DAE in Fig. 17). Thus, this paper projects
multi-level features into 512-dimension vectors as semantic
vectors (see HDAE(E) and HDAE(D) in Fig. 17). Moreover,
they trained linear classifiers and found that most elements of
the hyper-planes are nearly 0 (see Fig. 18). This indicates that
the few high-value elements indicate the dominant direction
of an attribute classifier, while the majority, of low-value
elements are noisy and may lead to attribute entanglement.
Therefore, this paper maintains the top-k values of the hyper-
planes and sets others to be 0 for disentanglement.
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